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J. Phys. A: Math. Gen. 14 (1981) 3277-3300. Printed in Great Britain 

Pairing transition of a one-dimensional classical plasma 

H Schulz 
Institut fur Theoretische Physik, Universitat Hannover, Germany 

Reckived 16 April 1981 

Abstract. A classical one-dimensional gas of charges ei = *l with interaction potential 
-Z eiei In(l+ [xi - x i l )  is shown to undergo a transition from a metallic (or plasma) state at 
high temperature to an insulating (or dielectric) state at low temperature due to the 
formation of pairs of oppositely charged particles. This transition is the 1D analogue of the 
pairing transition of a 2D Coulomb plasma. The early method (Baxter 1964) of mapping 
real gas statistics in 1D to ordinary quantum mechanics is applied, and is demonstrated to 
work fairly well even when the latter involves an infinite number of degrees of freedom. By 
variational treatments of this quantum mechanics a first-order phase transition is obtained. 
At small fugacity z the transition line starts perpendicular to the inverse temperature axis at 
p = 2 and turns to the right for large z .  An exact relation is derived between the dielectric 
constant and the effective mass of a Bloch band problem. On the insulator side the dielectric 
constant is argued to be identical to one. The equivalence of the model gas to a sine-Gordon 
type theory is also established and soliton solutions of the latter are given. By function space 
analysis the gas is again found to be metallic at sufficiently large fugacity but arbitrary 
temperature. 

1. Introduction 

Two-component classical gases can behave metallically at high temperature and be 
insulating at low temperature due to the formation of pairs of oppositely ‘charged’ 
particles. Basic to this possibility is a logarithmic interaction between the particles at 
large distance but not the dimension of the space they are moving in. Therefore, the 
classical two-dimensional Coulomb gas (2DCG) is not the only model which exhibits a 
pairing transition. 

The novel interest in the 2DCG (Hauge and Hemmer 1971) arose with realising its 
equivalence to the quantum sine-Gordon theory as well as to models of interacting 
fermions in 1D (Solyom (1979) and references therein), while the interest in the pairing 
transition of the 2DCG was initiated by Kosterlitz and Thouless (1973), who defined 
the transition as the sudden change of the dielectric constant from infinity (metal) to 
finite values (insulator). Then details of the dielectric function for small wavevectors 
were worked out by Everts and Koch (1977) and Minnhagen et a1 (1978). So far little is 
known, however, about the shape of the transition line in the fugacity (2) over inverse 
temperature ( p )  diagram (Kosterlitz 1974, Ohta and Kawasaki 1978, Saito and 
Muller-Krumbhaar 1981), or even about the physics near this line. It is then tempting 
to study the metal-insulator transition in one dimension where more powerful tech- 
niques are available. To present the corresponding model, henceforth called LG (for 
‘logarithmic gas’), is one purpose (among two others) of this paper. 

0305-4470/81/123277 + 24$01.50 @ 1981 The Institute of Physics 3277 



3278 H Schulz 

There is yet another philosophy suggesting the gas model considered here. It starts 
from the one-dimensional Coulomb plasma (1DCG). In contrast to the 2DCG, this 
Coulomb gas provides us with an ideal situation in statistical physics, since all quantities 
of interest can be calculated exactly (Lenard 1961, Edwards and Lenard 1962), 
including the dielectric constant (Ape1 etal(1979), henceforth referred to as AES). The 
1DCG insulates for all values of z and p, but is on the verge of becoming metallic for 
high density. By weakening the interaction from 1x1 to ln(1 + 1x1) the transition is shifted 
inside the zp plane, and one might ask then if (or how much of) the analysis of AES can 
be maintained by merely rewriting it to apply to the LG. To answer this question is the 
second purpose of this paper. The essentials of the AES theory, such as a relation of the 
dielectric constant to the effective mass of a Bloch band and the function space analysis, 
are rediscovered for the LG (see § §  5 and 6, respectively). 

The third purpose of this paper is to present a non-trivial example for an early 
method of Baxter (1964). In one dimension the statistics of a classical real gas 
(including correlation functions) can be traced back to a one-particle problem of 
ordinary quantum mechanics. The power of this method is its applicability to an 
arbitrary interaction potential. Apart from special cases, however, the related quantum 
problem involves an infinite number of variables. This might be the reason why 
Baxter's mapping, apparently, has been applied only to models which involve one or 
two variables. The interaction in these models is a simple power (Kunz 1974, Choquard 
1975, Schotte and Truong 1980) or an exponential (Behncke and Schotte 1979) or even 
has a hard core (Baxter 1965). In contrast, the LG is a 'normal' model. The crucial trick 
for dealing properly with the infinity of variables is a convenient embedding of the 
logarithm (see equation (3) of 6 2). In § 3 the quantum mechanics of the LG is 
established. It is also shown there that the many variables can always be associated with 
harmonic oscillators. Furthermore, the dielectric function is shown to be related to only 
the ground state wavefunction of the quantum problem. 

No exact solution for the LG has been found (although there may be still some 
chance of this). The main information is obtained from several approximate treatments 
given in 8 4. They strongly suggest a first-order transition of the LG (see also figure 2) 
occurring at the line shown in figure 1. Obviously, the shape of this line at small fugacity 
t is in contrast to the 2DCG case, where it forms an oblique angle. This reflects a 
difference of the two models. In fact, by strictly following the renormalisation pro- 
cedure of Kosterlitz (1974, Appendix C) vertical trajectories are obtained for the LG as 
shown in figure 1. Nevertheless, LG and 1DCG have much in common. So, using the 

.? 
Metal r lnsu'ator 

P 

Figure 1. Transition line in a diagram of schematic fugacity against inverse temperature for 
the LG. The tunnelling catastrophe occurs at the broken line. The arrows refer to flow lines 
from Kosterlitz renormalisation. 
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method of Zittartz (1976), the analytical structure of the grand canonical potential 4 
can be worked out as #=az”+bz’+ . . . (  2’0) where v = 2 / ( 2 - p )  and a,  b are 
functions of the temperature. Here the only difference to the 2DCG is a shift (due to 
dimension) of the critical temperature from p = 4 to p = 2. One could also suspect the 
LG in essence to be the Kondo problem, since the 1D gas version of the latter 
(Anderson and Yuvall969, Schotte 1970) differs from the LG only by the requirement 
of alternating order of the charges. However, the Hamiltonians associated with both 
gases look rather different (see the end of § 3). Thus, more than similarities should not 
be expected. 

2. The model 

Consider a classical system of two kinds of particles in 1D in an interval of length L in 
contact with a thermal reservoir at temperature p-’ and with particle reservoirs at equal 
chemical potentials. The particles have equal masses and equal but opposite (unit) 
charges et = * 1 ( i  = 1,2, . , . , N = N ,  + N - )  and interact in pairs by eieiv (xi - x i )  with the 
soft-core potential 

v ( x )  = - h ( l +  1x1). (1) 
The grand partition function of this system is given by 

where V = X z j  eieju(xi -xi), z is the fugacity and VR is the interaction of the system 
with the particle reservoirs, which have to be included in cases of long-range forces 
(Edwards and Lenard 1962). The variables L, p, t, x are dimensionless as a result of 
choosing proper units (such as some ‘real’ soft core as the length scale). This model 
(LG) can be viewed as a system of (soft) charged rods on the x y  plane, which are all 
parallel to the y direction, but only move in the x direction and penetrate each other. 

To deal with the term VR in (2) (but also for later convenience) one may construct a 
sequence of models characterised by an interaction v , ( x ) ,  which converges to v ( x ) ,  (l), 
for E -+ 0, but saturates at large x for any finite E .  The most convenient choice is 

u , ( x )  = -ln[1 + ( I  -e-+’)/&]= -uo+ w(x) (3) 

w(x) = -ln(l - A ’  (4) 

with vo  = ln ( l+  1 /e )  -+ +a ( E  + +O). The function w(x), given by 

is that part of (3) which can be Fourier transformed: 

2 A 2 k  
w(q) = dx e’“w(x) = - J E k k 2 + q 2 / E 2 ’  

The notation A’ = 1/(1+ E )  is often used in the following, and, if not specified, sums or 
products over k run from 1 to a. For later use note that 
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Only the long-range part -oo of (3) needs to be included in VR if, in the following, the 
thermodynamic limit L + CO is performed first and F + 0 afterwards. Considering 
system plus reservoir as electrically neutral, we have 

(8) 
Obviously, in the limit E + 0 the exponential exp(-P VR) in (2) enforces neutrality of the 
system itself. As the derivation shows, strict neutrality results for any confinement 
interaction, since it is possible in general to embed the latter by functions of the form (3). 
The known strict neutrality of the l D C G  (Edwards and Lenard 1962) serves us with 
one more example. Furthermore, it is permitted to include only part of VR in (2) 
without changing the physics of the model system at hand. Including half of VR, using 
(3) and 2 Czj eiej = (N+ -N-)*-N, the sequence Z, converging to (2) can be written as 

2 VR = vO(N+ -N-)  . 

1 with zo = z exp(-$3vo) and e = C%, e,e,rv(xi --x,), which is the convenient starting 
point for all further analysis of the LG. 

The interaction (1) is not the Coulomb interaction of 1D electrodynamics. It is 
necessary, therefore, to give the terms ‘metal’ or ‘insulator’ a precise meaning. Let a 
weak external potential Vex induce the changes *xi Vex in the (Fourier transformed) 
particle densities. Then the induced potential is given by 

VI” = w ( X +  + X - )  vex = -b vex. (10) 

If, in the long-wavelength limit q + 0, the system is able fully to compensate the external 
potential, i.e. if b,=o = 1, the system is called a metal. If not, i.e. if 0 == bo < 1, it is called 
an insulator. Equivalently, one may consider the ‘dielectric function’ E ,  = 1/(1- b,) to 
decide whether the system is metallic (eo = 00) or insulating (1 s eo < CO). It should be 
noted that there are also other possibilities of defining the transition, which are not 
considered here. For example, one could associate an additional ‘electrodynamic’ 
charge with the particles, interpret (1) as the net interaction between them and then 
compare the induced ‘electrodynamic’ potential with Vex, 

Linear response calculation relates the functions xm, cy = *l, in (10) to the density 
correlation functions, 

X a  = - P ( n  + f a m ( q ) - f m  - m k ) ) ,  (1 1) 

where faa,(q) is the Fourier transform of 

and n = (N+)/L  = (N-) /L  is the particle density of one species. Now (10) reads 

6, = 1 - 1/€, = w(q)2P(n +fq) 

nf=n +fq=o=((N+-N-)2)/L (14) 

(13) 

where f = &++ +f-- -f+- -f-+). Note that the fluctuation term 

is non-zero for the interactions w ( x ) ,  (4). It could be omitted due to the strict neutrality 
arrived at for E + 0. Nevertheless, the term nf is included in the following to control the 
consistency of approximations and to maintain the correct physics even for E f 0, i.e. for 
a class of models other than the LG. 
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3. Mapping to quantum mechanics 

The beauty of Baxter’s work (1964) lies in the simplicity and generality of the idea. Its 
challenge is to exploit the possibility of mapping to treat non-trivial models, which 
involve an infinite number of degrees of freedom in the related quantum problem. 
These degrees of freedom, as is now shown, can always be dealt with as harmonic 
oscillators coupled via a cosine of the sum of variables. 

For a two-component 1D real gas the Baxter transformation can be roughly sum- 
marised as follows. 

(1) Generalise the partition function to the functional 4 ( L ;  G(x) )  obtained from 
Z,(L), (8), by adding to f the potential E;”=, eiG(L-xi) .  Note that q5(L; 0) = Z,(L) 
and q5(0; G(x) )  = 1. 

(2) Restrict the functions G(x) ,  0 < x, to be in the subspace 

G ( ~ ) = ~ ~ ~ ( X ) + C ~ W ’ ( X ) + C ~ W ’ ’ ( X ) + .  . . . (15) 

Derive for 4 the ‘time-dependent Schrodinger equation’ a& = -X4, where X acts on 
the coefficients ck of (15) only. The formal solution is q5 =e-Lzl,  or, by a proper 
similarity transformation in ck space, 

H = e A X  e-A. (16) ($=e-Ae-LH A e 1, 

(3) For the correlation functions fa,#, (12), proceed similarly but keep the positions 
x, x f  (O<x <x‘) fixed when varying L down to zero. The resulting functionals cp,,. 
corresponding to fa,, may be written as 

cp,,,=q5- e 1 - A  exp[-(L-x’)H]K,, exp[-(x‘-x)H]K, ePxH e A l ,  

K, = eAXU e-A. (17) 

(4) Expand the ‘wavefunction’ eAl  in eigenfunctions in) of H,  H ln )=EnIn ) .  
Return to the original quantities 2, and fa,. by setting all c k  = O  and perform the 
thermodynamic limit. 

The results are 

Z,  = exp(-LEo) 
and 

where Eo is the ground state energy of H and a,, = E, -Eo. 
In steps (2) and (3) the operators X and YC, are also obtained: 

X = -YC, - YL - D, ylk = to eTPG(O’ e*a, (20) 

DG(x) = G’(x),  (21) 

aG(x) = w(x). (22) 

where D and a are operators acting in the c space such that 

No explicit use has been made so far of the special representation (15). In fact, there is a 
much more convenient representation that is obtained from (15) by first expanding the 
interaction (4) in powers of h 2  e-“ and then collecting the terms with equal exponen- 
tial: 

(23) G(x)  = - i p - ’ c  Yk e-kgX. 
k 
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Then, from (21) 

from (22) 

= i 1 ukayk 
k 

with 

u k  = pAZk/k 

and from (20) 

~ + = z  exp(*ic(yk+uka,*)), k (27) 

A + B  
[ A * B 1 / 2  has been used as well as Ckuk = pvo. Specifying the where e e = e  e 

similarity transformation mentioned above by 

A B  

the final result of mapping is constituted: 

together with the equations (18) and (19). 
It should be emphasised now that the Hamiltonian (30) depends on the special 

interaction (1) (or (4)) of the LG only through the coefficients U k '  (26). In fact, the above 
way of mapping can be followed for a rather general class of interactions v ( x ) ,  the only 
requirement being that w ( x )  = u ( ~ / E  -e-€' / E ) - u ( ~ / E )  (cf (3) and (4)) can be expan- 
ded in powers of e-'' to obtain through (22) and (25) the corresponding coefficients. 
These coefficients should have normal values as E + 0 (do not use exponentials for o (x)). 
To give examples, for (a) o ( x )  = -x/(l + x ) ,  (b) v ( x )  = (1 + x ) - l l 2 -  1, (c) v ( x )  = 
1 - ( 1 + x ) ' l 2 ,  (d) v ( x ) = - x  (o<x), the coefficients are (a) ( T ~ = / ? & A ~ ~ + ~ ,  (b) ( + k =  

p C ' A  2k-28k,l, respectively. Changing the potential u(x) smoothly through these four 
cases, the decrease of (+k with k becomes more and more pronounced. For the models 
(a) and (b) there is certainly no confinement and no pairing, while for the lDCG (d) the 
insulating behaviour is proven, and model (c) is most probably also an insulator. Thus 
again: a borderline case must exist. Note that the LG is placed between cases (b) and (c) 
with regard to both u ( x )  and uk. 

To study the dielectric function (13) of the LG only the ground state properties of H 
really need to be worked out. This has been shown by AES for the 1DCG and can be 
reformulated for the problem at hand, For the present, the function f, in (13) still 
involves the excited states 4, = ( y l ,  y2, . . . In) with energies E,, 

P&1/2A2k+1 (2k - 1)!!/(2k)!!, (c) (Tk = P E - ' / ~ A ~ ~ - ' ( ~ ~  -3)!!/(2k)!! and (d) (+k = 
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where (19) has been Fourier transformed, (29) is used, the 4, are chosen real and the 
shorthand notation 5 is introduced for the integration over the whole yk-space. Consider 
now the inhomogeneous auxiliary problem 

( H  - E ~  + iq)x = 402z sin 1 Yk , (32) 
( k  ) 

solve it formally for x by expansion in the 4, and form 

g, = 22 $ox sin($ Yk) (33) 

to obtain g, = X, @:/(a,, +iq), i.e. 

f, = -Re g,. (34) 

By (32)-(34) and (13) the correlation function b, is traced back to the ground state 
wavefunction Go. However, the additional problem (32) to be solved is the price for this 
simplification. To complete (13), the particle density n can be obtained thermo- 
dynamically from (18) as 

(35) 1 n = -zzJ,Eo 

and rewritten as 

by differentiating Hsl/o = EoGo with respect to z and integrating. 
Two different pictures can be drawn about the physics described by the Hamiltonian 

(30). To start with, H can be viewed classically as an infinite number of masses on 
springs of increasing spring constant, the sum of elongations of which is coupled (e.g. by 
pistons) to the angle of a simple pendulum. Clearly this ‘machine’ has a large but finite 
number of equilibrium positions, each specified by a set of variables y:), where n = 0, 
il, *2, ,  . . , *no refers to the nth potential minimum and no is of order z P / &  in 
magnitude. From (30) these minimum positions are easily obtained as 

y:) = (S,/I)AZk/k2, (37) 

where I = X k  AZk/k2. In (37) the factors S,  are the solutions of 

sin S = - S ~ / 4 z p I  (38) 

with cos S>O. Note that S,  approaches 271.n for In/<< no, the absolute minimum 
corresponds to n = 0 and the energy separation of adjacent minima is of order n&/P in 
magnitude. Everything concerning the LG is in the quantum mechanics of the above 
machine. For small p (large masses, stiff springs) the ground state wavefunction might 
be governed by the lowest potential minimum, while tunnelling should dominate at 
large p (see also § 4.3). 

In a second picture only one particle is associated with H. After slight scaling 

Yk = (kCTk)’”Xk (39) 

of the variables, the Hamiltonian 
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describes a particle in an infinite-dimensional space in an anisotropic oscillator poten- 
tial, to which a potential of ‘corrugated iron’ shape is superposed in one special 
direction. But the equilibrium positions 

x(kn) = (S,/Ip1/2)A k / k 2  (41) 

mark another direction (see also § 5 ) .  The period of the corrugated iron is governed by 
P. 

Furthermore, H may also be considered as the discrete version of a certain quantum 
field theory in one space and one time dimension. A familiar formulation of this field 
theory (for one real field over a finite interval) could be given, but seems to be of no use 
for practical calculations. Even Bose operators, which would be useful in proving 
(01 exp(-LH)IO) = 2, by expansion in powers of z ,  need not be introduced, since the 
method of guessing H and verifying it afterwards (Behncke and Schotte 1979) is 
overcome here by Baxter. 

For comparison, it is perhaps worth treating the 1D gas version of the Kondo 
problem (see the end of the Introduction) by exactly the same procedure as the LG. The 
result is 

0 1  
H K ~ ~ ~ ~  = H O  - z [  ( o) exp( i ; Y k )  + Hc] 

where Ho equals H at z = 0 (multiplied by the unit matrix). The difference between 
(42) and (30) is obvious. 

4. Variational calculations 

This section is devoted to various approximations of the ground state of H, (40). Three 
of them are introduced by selecting a class of trial functions for the variational problem 
associated with H. A rough approximation philosophy arises already from simple 
perturbation theory with respect to the cosine term in (40). To first order the ground 
state energy Eo is given by 

Ed” = -2t[E/(1+ (43) 

and vanishes for E + 0 due to the ‘period’ of the cosine going to zero. In fact, inserting 
typical oscillator-spacings xk in the cosine argument, it diverges with E + 0. All e 
dependence can be deferred into the perturbation term by changing the energy scale by 
a factor of 1 / ~ .  Then E ~ ) / E  exhibits a threshold at p = 2 due to concurrence between 
the prefactor 1 / ~  and the cosine period. For p < 2 the prefactor dominates, and the 
cosine is no longer a ‘weak’ perturbation but influences strongly the shape of the 
wavefunction Qo. Thus, a dramatic change of $0 is expected when p decreases through 
p = 2. Since qbo determines the correlation function E ~ ,  one may already conjecture that 
the transition line ends up at p = 2 for small z. 

To confirm the above arguments, consider the first-order correction of Qo: 

with 
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For completeness, the second-order correction to the energy turns out to be 

It diverges with E + 0 for p =s 1 in agreement with the analytical structure of the grand 
canonical potential q5 (cf the Introduction). For 1 < p (46) leads to 

lim E ’ O  = - 2 z 2 / ( p  - 1) (47) 

in agreement with the fugacity expansion of q5. By the way, the possibility of dealing 
with quantities like (44) and (46), which would not exist for the LG for all parameters, is 
one more advantage of the embedding (3) of the interaction potential. 

4.1. Harmonic approximation (HA) 

This subsection is not yet variational but prepares for the next. The HA amounts to the 
replacement 

i.e. to bilinear approximation of the lowest potential minimum. This certainly over- 
states the role played by the cosine, and the possibility of averaging out its periodic 
variation is lost. Thus, according to the above philosophy, (48) can only be reasonable 
for small p. With (48) the potential energy in H,  (40), becomes a quadratic form XVX, 
and the matrix V k k ‘  = $ E k 2 S k k ,  + p z ~  k~ k’  is easily diagonalised by an orthogonal trans- 
formation CO, CoC;f = 1. Introducing by 

(C;fVCO)rs = 8 r s t E T g r  (49) 

the notation for the diagonal elements, the matrix CO is obtained as 

with ror = r,(z), yor = y r (z ) ,  where the functions r r ( l )  (or T, for brevity) are the positive 
solutions of 

while 

The ground state wavefunction turns out as 

&* = constant x exp(-xAx) 

with 

Am = a c C O r k T O k C O s k .  
k 

(53) 

(54) 
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The corresponding energy is given by 

The results (50)-(55) are much less horrible than they look. So the sum in (55) is easily 
evaluated (see (A7)) to give 

1 "  
E y A  = -22 f- dq ln[ l+  2pzw(q)], 2n Jo 

and the limit E + 0 simply amounts to the replacement w ( q )  + wo(q) ,  (6). At E = 0 the 
energy (56) has no expansion in powers of z.  Its singular part is -pz ln(2npz), which 
may be interpreted as the leading term towards small pz of the exact grand canonical 
potential (see the Introduction). 

With the input (53) the auxiliary problem (32) can be solved exactly, if also in (32) 
anharmonic terms are suppressed corresponding to the HA. This amounts to linearisa- 
tion of the sines in (32) and (33). With variables & = C;fx and for the function cp defined 
by x = $yAcp, the auxiliary problem then reads 

(57) (- E A + E& V + iq ) cp = 2zp y&, 

where T is the diagonal matrix T,, = S r s ~ O r  and y (yl, y2, . . .). The solution of (57) can 
be guessed as cp = U& with a = ~ Z ~ " ~ ( E T  +iq)- y. Since the matrix A,  (54), becomes 
diagonal in the & space, the function g,, (33), is readily evaluated to give 

and, with (34) and (A2), 

f"" = -2Pw(q)/tl+2Pzw(q)). (59) 

To constitute the dielectric function, (13), the particle density n, (36), has to be 
'harmonically approximated' consistently. The correct choice 

n H A = z J  + z = z  (60) 

is obtained from the requirement that nf = n + f o  goes to zero with E + 0 (see the end of 
8 2), where from (59) f o  = z / ( l  + &/4pzI).  Combining (13), (59) and (60), the result is 

E"" =l / ( l -b ,HA)=  1+2pzw(q).  (61) 

Turning (by E + 0) to the LG and considering the long-wavelength limit (see (6)), it 
becomes clear that the H A  predicts a metal in the whole pz plane-a poor approxima- 
tion. 

4.2. Gaussian approximation ( G A )  

The ground state wavefunction qb0 of H, (40), is gaussian not only for small p, where the 
H A  applies, but also for very large p, when the effect of the cosine oscillations is 'washed 
out' entirely. Therefore, minimising the energy functional E = J i,bI-I+/J (L2 with a 
general gaussian trial function centred at the lowest potential minimum, 

(62) $ = constant x exp(-xBx), 
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must give basic information about the transition. Without specifying the matrix B, this 
functional becomes 

E(B) = E Tr(B -$K +&K2B-') - 22 exp(-$lB-'Z), (63) 

where K,, = rS,  and 1, = pl/ 'h  '. Varying independently all elements of B, (63) reaches 
its extrema at 

B = aCrCT. (64) 

The matrix C and the objects T~ are given by the same equations as CO (see (50)) and rOr 
except that z must be replaced by an 'effective fugacity' f (see (51) and (52)). The 
values of f are the positive solutions of 

5 er = z ,  (65) 

where 

and (A5) has been used. The derivation of (63) and (64) is straightforward and 
therefore not given here. The condition (65), however, is easily derived from the energy 
as a function of f ,  

E ( f )  = -2ff - 22 e-f + 2 df '  f ( l ' ,  p ) ,  I,' 
which is obtained from combining (64) and (66) with (63). It also follows from (67) that 
a given solution f o  of (65) corresponds to an energy minimum (maximum) if the LHS of 
(65) has a positive (negative) derivative near f o .  

To study the condition (65) assume 0 < lim,,o f ,  introduce an upper cut-off q = 1 in 
(66) (cf (7) )  and replace w ( q )  by T / q  (cf (6)).  Then f is approximated by 

(68) f = - 3 ~  ~ ~ [ ~ T P U U  + ~ T P L ) ] ,  
and (65) takes the form 

For p < 2 the LHS of (69) is a monotonic increasing function of f ,  and thus (69) has only 
one solution, which corresponds to a minimum of E ( f ) .  The corresponding wavefunc- 
tion cL0 is given by (62). Note that the matrix B equals A, (54), when z is replaced by f .  
This replacement even accounts for the gaussian approximation in the equations (57) to 
(61), s o  that 

E:* = 2?7/3f/q + O(1). (70) 

Thus, the LG is metallic for /3 < 2 and all 2 .  In passing, note that f behaves as z 2 / ( 2 - p )  
for small z and corresponds to the renormalised mass in the sine-Gordon theory 
(Luther 1976). Probably, by following Minnhagen et a l (1978) ,  the metallic behaviour 
of the LG for P < 2  can be proved in general. Furthermore, the G A  is possibly 
equivalent to a modified Debye-Huckel theory of the LG (Schulz 1977). 

The case 2 < P is more interesting. There is no solution of (69) for z smaller than 

(71) 2 0 = ( 1 / 4 ~ ) ( 1 - 2 / @ )  1 - P / 2  . 
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This means that the lowest energy is reached at a border of the f interval, which is [ = 0 
here. In fact, it follows from (67) and (66) that the derivative 

lim lim E’(() = ,B (72) 
<+O E’O 

is positive. For to < t (and 2 < p )  there are two solutions of (69), one corresponding to a 
maximum. The whole story is illustrated in figure 2, which shows the function 

obtained from (67) with the additional approximation (68). Thus, in G A  a first-order 
transition is obtained, and the role of the order parameter is played by 

2lrPf = lim lim qcq (74) 
4-0 E ’ O  

(cf (70)). Denoting by Ei and E, the energies at the ‘insulator minimum’ ( f  = 0) and the 
‘metal minimum’, respectively, the G A  predicts Ei = 0 and E,,, = E(l,), where 5, is the 
larger of the two solutions of (69). The transition line z ( p )  is then defined by E, = Ei 
and can be given in parametrised form, 

l n x  ) ln(1 + x ) ’  4 7  i l n ( l + x )  ’ 
2x 1 p=- t = - l n ( l + x ) e x p  x-x- (75) 

with 0 < x < a. This function starts at z = 1/4.rr, P = 2, with infinite slope, 

and increases monotonically. Details like (75) may, of course, strongly depend on the 
approximation used. However, the above qualitative pictui e of the transition will no 
more change in the following. 

Figure 2. Grand canonical potential I$ = LP-’E([), (73), in gaussian approximation as a 
function of the order parameter (74) for P = 3 and seven z-values: z = zo(l+0.66n),  
n =-2, - l , O ,  1, 2 , 3 , 4 .  
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In the limit of large z and there is no problem in calculating f ,  fm,  E,  directly from 
(65)-(67), i.e. avoiding the approximation (68). f behaves as {-'/', and the result for E,  
is 

(77) E,= -22  + p 1 / 2 z 1 / 2 - 1  -U') 
16p -9 + o(z 

(cf (97)) with 

Jo 

It remains to discuss the state of the LG corresponding to f = 0, or at least to obtain 
the wavefunction I,!I0 in that case. Note that { = 0 violates one of the conditions for the 
approximation (68) to be valid. In fact, if the function f is evaluated at non-zero E ,  one 
more solution 

8/2  
E 

f i  = z( =) + O(E 8-l) (79) 

of (65) appears inside the 3 interval (0, CO) and corresponds to a minimum. Inserting 
(79) for z into (50) and for f into (5 1) and (52), and performing the limit E + 0 only now, 
T k ,  c k r  and Bkr approach k ,  8 k r  and aka,,, respectively. The wavefunction (62) thus goes 
over to $do), indeed, which corresponds to the H A  at z = 0 and implies eq = 1 (see (61)). 
The insulator case is discussed further in 3 4.4. 

4.3. Tunnelling catastrophe 

The ground states considered so far all favour the central lowest potential minimum. 
The true potential energy, however, has many such valleys of nearly the same form and 
depth (cf $ 3), and it is quite natural to think in terms of tunnelling and relative amounts 
of probability in adjacent valleys. Since a single gaussian can never form such 
probability accumulations, the serious question might arise whether the first-order 
transition of 9 4.2 is perhaps an artifact due to impotence of the trial functions. The 
answer to this question will be no. But in tackling the problem a tunnelling 
phenomenon will be observed, which is special to quantum mechanics with infinitely 
many degrees of freedom. 

A convenient approach to the above-mentioned purpose is provided by trial 
functions, which are linear combinations of gaussians each centred at a classical 
potential minimum x t ) ,  (41): 

The matrix B is defined by (64) and depends on the parameter f .  Thus, the set of 
variation parameters is made up of 5 and the coefficients a,. Since the decrease of these 
coefficients for very large n (n - 1/e)  does not interest us here, the approximation 
S, = 21rn is adopted for simplicity (this explains why the sum (80) is infinite). Again the 
calculation of the energy functional E ( f ,  a,) is straightforward (but lengthy) and results 
in 

(81) E(C, P") = E ( l ) + F ( f ,  U " ) ,  
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where E ( [ )  is given by (67) and 

F(4‘, a n )  = c Qnmanam/  1 Pnmanam 
n, m n, m 

with 
P,, = exp[- ( n  - W Z ) ~ R ] ,  

Q,, = Pnm{nmE.rr2/PI-.rr2[(n -m)’+22 e-f[l-(-l)”+”’]} (84) 
and 

As (82) shows, the matrix elements P,, represent the overlap integrals J $(,,$im,/J 
where $in) stands for the nth exponential function in (80). The sum ( 8 5 )  is evaluated in 
the Appendix. If limE+o [ is non-zero, 

k = ( 2 / P )  ln(l/E) + 0(1) (86) 
diverges with E + 0 independently of 5. Thus the overlap integrals P,, vanish as 
E 2 i n - m ) 2 / P  in that case. This is a mysterious result (perhaps not to field theorists), since 
the separation of the potential minima is finite and so are typical xk-values such as 
CrCkr7;’” (from (63) and (64)). The sum over the squares of typical xk-values, 
however, diverges for E + 0 (see also (A10)). Note that in an infinite-dimensional space 
the diagonal of a unit cube has infinite length. 

The property (86) keeps the following analysis simple. Varying E(5, a,) with 
respect to the coefficients a,, the system of equations 

1 (Qnm -FPnm)am = 0 
m 

is obtained. Introducing the Fourier transform by 
25T 

a, =- dcp einpb(cp), 
2.ir 0 

this system turns into 

[- ( E T ~ / ~ I ) ~ + . U ~ ~ + .  + .rr2tu1 + 22 e-f~2]b(cp)  = U ~ F ~ ( ( P )  

UO(cp) = 1 +2 c Po, cos(ncp), 

(89) 
where Uo, U1, U2 are functions of cp given by 

m 

n = l  

UZ(cp) = UO(cp) - Uo(a + 7). 

For E -P 0, and because of (86), these expressions simplify considerably (namely to 1, 
-2POl cos cp, 4P0, cos cp, respectively) and (89) takes the form 

c-a?-,-2w cos cp)b(cp) = (W/6E)b(cp), (91) 
which is Mathieu’s equation. But only limiting cases of (91) are relevant here, since due 
to Pol - c 2 I P  the factor 

w = ( ~ ~ ~ 2 p / 3 e ) ( $ . i r ~ ~ - - z  e-f) (92) 
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either vanishes (p  < 2) or diverges (2 < p). In both cases F goes to zero with an E power 
4 / p  - 1 or 2 / p  for p < 2  and 2 < p ,  respectively. Thus, by (81), the value of t (if 
non-zero) is to be determined in the same way as in Q 4.2, i.e. from (65 ) .  

It is even an easy task to calculate the coefficients a ,  from (91). For p < 2  the 
function b (cp) becomes constant, which means that 

lim a ,  = constant X 
E - 0  

No probability tunnels into the neighbouring valleys! The whole cosine function acts as 
an anharmonicity. For 2 < p, on the other hand, the function b ( q )  turns into a delta 
function at cp = 0. Consequently, all coefficients become equal. Thus, increasing p 
through p = 2, a sudden tunnelling breakthrough occurs, overflowing equally all valleys 
by the probability which was concentrated at the central minimum before. 

Within the approximation introduced by (80) and for 2 < p the above analysis works 
if z > zo (to guarantee the existence of a finite t). Therefore another solution of the 
above variational problem must exist at least for z < zo. Assume 4‘ to be of order E”’ in 
magnitude (cf (79)). Then (86) no longer applies, the overlap integrals Po, remain finite 
and make Uo, U1, UZ non-trivial functions. But now in (89) the terms with U1 and V2 
may be neglected compared with the first term. The eigenvalue F becomes indepen- 
dent of 5. Now, varying (81) with respect to f ;  again the condition (65)  is obtained. 
Hence [ is given by (79), which is consistent with the assumption. Correspondingly, the 
wavefunction (80) is made up of functions 4, = $b”(x - x ( ~ ) ) .  It is thus widespread over 
all valleys, no matter how many coefficients a ,  contribute. 

To summarise, the whole picture of the metal-insulator transition of Q 4.2 is 
reproduced here with the only exception that (for 2 < p )  the sharply peaked gaussians in 
the metallic range are nearly periodically repeated now. It is highly probable that the 
auxiliary problem continues to give eq - l / q  in that range. Remaining doubts are 
overcome in Q 6 .  

It should be emphasised that the tunnelling catastrophe occurs at the vertical line 
p = 2 and hence differs from the metal-insulator transition line (figure 1). Moreover, as 
is shown in § 5 ,  the tunnelling breakthrough phenomenon is special to the embedding 
(3). It takes place gradually for these models ( E  # 0). 

4.4. Mathieu approximation (MA)  

The approximations considered so far have rather subordinated the insulating state. 
The energy E:* at the insulator minimum tends to zero as E + 0 in contrast to the 
perturbation correction (47). Also, the wavefunction ($bo’ in GA) corresponding to Ei 
should vary nearly periodically over the potential valleys such that $r) only plays the 
role of an envelope function. The trial function 

points in this direction. The function cp is to be determined variationally, and the 
approximation is in the restricted dependence of cp on only the cosine argument. The 
calculation of the energy functional makes use of the variables u k  of § 5 (see (101)). The 
resulting equation for cp and Ei is 

(-pa:, + u O ~ U ~ & , ~ -  22 COS Ui)cp(ul) = Eicp(ul), (95) 
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to be solved for the ground state. Since the factor U;’, (4), vanishes with E + 0, once 
more Mathieu’s equation is obtained. For small z the energy is 

 EM^ = -2z2/p + 0 ( z 4 )  (96) 

and is to be compared with the exact second-order correction (47) of the energy. Both 
expressions agree in the limit p + CO, which fact is well understood physically. For large 
p, i.e. low temperature, the mean distance of two paired particles becomes so small that 
v ( x )  may be approximated by - 1x1. The LG then must obtain the properties of the 
lDCG, for which system Mathieu’s equation is exact. Most probably, for p +CO (95) is 
correct even to higher orders in z. As a speculation, consider z going to infinity at some 
fixed value of p (perhaps not even large). Then (95) gives 

EMA = -22 + p 1/22 ‘ I 2  - &p + O ( Z - ’ / ~ )  (97) 

which exceeds Em, (77), just by a constant. This is in accord with the general qualitative 
picture of 3 4.2 predicting a metallic state at sufficiently large density for any tempera- 
ture. 

The calculation of the dielectric function in MA can be traced back to the exact 
analysis of AES on the 1DCG. With (94) the integrals Sn, (31), at first take the form 

Pn = 22 [ dvl q+po sin u1 [ ’  4/bo’2, 
J J 

where I’ integrates over v2,  u3 ,  . . . . But for E + 0 the unwanted factor 

$,bo)’” = constant x exp(-v:/2puo) (99) J 
becomes independent of u l  and can be omitted. From AES (note that their integrals $ y  
are related to P,, by Sv = a$”) it follows that f, + n = q2(1 - l / e q  is 
finite and larger than 1, since the 1DCG insulates. Therefore (13) takes the form 

lDCG lDCG s ), where eo 

b y A  =2rrpq(l-1/eADcG)+O(q3) (100) 

corresponding to a total insulator with eo = 1. 
To understand the result (100) physically, consider all particles grouped in pairs 

responding to an external force only by forming finite dipoles. The potential of each 
dipole vanishes at large distance due to the ‘weak’ logarithmic interaction. 
Consequently, the induced potential Vi, (cf (10)) has no contribution at zero wavevec- 
tor. Thus (100) reflects the non-Coulomb nature of the LG. In a 2D electrodynamics a 
1D dielectric does not contribute to the macroscopic polarisation. As a conjecture, 
eo = 1 is true in the whole insulator region (see also the end of 5 5). 

5. Bloch problem 

In this section a lattice periodic problem HB is derived by a slight modification of the 
Hamiltonian H. This modification is shown to give another sequence of models 
converging to the LG ‘from below’. The effective mass m” of the lowest band of this 
Bloch problem is then related to eo in analogy to the 1DCG treatment by AES. 

There is an easy direction in the problem H marked by the classical potential 
minima xp’, (41). The probability flowed in this direction after the tunnelling break- 
through and developed a nearly periodic distribution. The step mentioned above is 
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from nearly to strict periodicity. The first task is to introduce new variables v k  as linear 
combinations of x k  such that the classical minima lie on the u1 axis, u t )  = ?J?)Sk , l ,  and 
all other variables u2, 03,. . . span the hyperspace in which the cosine in (40) remains 
constant. In the x k  space the easy direction and this hyperspace form an oblique angle. 
They become orthogonal, however, by scaling the variables x k  by a factor of k .  The 
transformation is therefore given by 

where D is an orthogonal transformation, DDT = 1, with 

Dlk = I - ‘ / 2 h k / k .  (102) 

Note that the above requirements are fulfilled with U?) = S,. The transformation (101) 
still allows for an arbitrary rotation in the hyperspace. Using this freedom to make the 
Hamiltonian diagonal in the ‘side variables’ u2,  v3 ,  . . . , the matrix D becomes 

(103) D r k  = Dlk (S,I + d J r / ( k 2  - C: 11% 
where the numbers c, are the non-negative solutions of 

I = C h z k / ( k 2 - C ? ) ,  
k 

while 
-1 /2  

d , = 1 1 ’ 2 ( ~ A 2 k / ( k 2 - c : ) 2 )  . 

The Hamiltonian (40) transforms into 

where primed sums exclude k = 1. 

term of (106). Note also the factor E of this term. Thus, the Bloch problem 
The discrete translational symmetry in the u1 direction is broken by only the second 

HB=-pat l -22  COS Vl-2p&I ~ ‘ C k d k a u , a u l + E  c f ( -PIC2ka~,+U2k/4PI-ck/2)  (107) 
k k 

perhaps represents an alternative description of the physics of the LG. The proof of this 
conjecture goes through § 3 in the backward direction. The aim is to rewrite HB in a 
form comparable with (30) such that the underlying interaction can be merely read off. 
If H B  is re-expressed by the variables x k ,  in addition to (40) a binnear term appears and 
requires a further diagonalisation. These two steps are equivalent to introducing the 
following variables U k  : 

U, = urdrlcr (r  z= 2). 
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Using ( log) ,  (A12) and the notation Io = x k  A2k/k4 HB goes over into 

and indeed attains the structure of (30). The second term (in which q + 0) is added 
arbitrarily for convenience in the next step. In fact, the Hamiltonian (30) turns into 
(109) if one replaces Yk + u k ,  w1 + p12/Ioq, f f k  + pId;/ck (k 2) and k + q for k = I ,  
k + ck for k 2 2. Denoting the result of these replacements in w(x) = p-' x k f f k  e-kEx by 
wB(x) and performing the limit q + 0, the modified interaction u B E  (x) = wB(x) - wB(0) 
is obtained as 

To discuss the function (110) note that uL,(O) = -1 and realise that for E going to 
zero finite contributions to the sum in (1 10) can only arise from k values of order 1 / ~  or 
larger. For such large k, (104) and (105) give Ck-k and dk-AkI-1'2 leading to 
-ln[l+ (1 /~ ) (1  -e-"")] for the second term in (110). Consequently for E + 0 uBE(x) 
turns into u (x) = -ln(l + x). This completes the proof. Due to its linear term, uBE (x) 
represents an embedding of the true interaction u(x) from below. It should be noted 
that the periodic Hamiltonian Hs can be used instead of H for all values of p and z. The 
calculations of § 4 could have been performed using HB. No doubt, the same results 
would have been obtained except for the tunnelling catastrophe. 

The Bloch problem HB, (107), differs from Mathieu's equation 'only' via the 
coupling to the side variable oscillators. This analogy of the LG to the 1DCG is 
followed next in deriving a relation between the dielectric constant and the effective 
mass of the lowest band. For the 1DCG this relation is E O  = 2m*(AES). Using the 
variables v k  and the shorthand notation h = HB -Eo, the auxiliary problem (32) reads 

(h + iq)x = 14~~22 sin u l .  (111) 

x q = o  = -aW$o, (112) 

As a first advantage of HB, the solution of (1 11) for q = 0 can be given explicitly: 

which is easily verified by differentiating h$o = 0 with respect to u l .  Using (112) in (33) 
and (34) and partial integrating, 

is obtained (cf (36)). Thus, the fluctuation term Itf, (14), is zero, as is expected for 
interactions embedding u(x) from below. Using (112), (113) and combining (13), (33), 
(34) and (111) one obtains 

with the function ,f to be determined from 

(h2+q2)2  = -q51'02z sin u l .  
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Furthermore, the solution of ( 1  15) can be written as 

j = a  6- i- 

is evaluated in the Appendix (see ( A 1 4 ) ) .  Simplifications are possible now towards 
E + 0 and small q :  a turns into l / p q w ( q )  and the function 8 is expected to contain one 
factor of q more than 6 and is therefore omitted (compare (118)  with (115);  this step is 
somewhat delicate, since no rigorous proof is available). It follows that 

This expression can be related to m * as follows. 
The eigenfunctions of HB are Bloch functions with respect to u l .  The corresponding 

energies E,, might build up a very complicated band structure due to the many side 
oscillators. The index v is certainly discrete, however, and the effective mass m *  of the 
lowest band may be defined by EKo = ~ ' / 2 m *  + O ( K ~ ) .  Rewriting the eigenvalue 
equation into one for the Bloch factors U k O ,  expanding the latter as 

(122)  
2 

U k O = ( L O - i K 6 + K  ?J+. . . , 
and collecting terms of order K and K* separately, the two equations (117)  and 

hq =(1/2m*-p)(L0+2/3 d 6  (123)  

are obtained. Multiplying (117)  and (123)  by (Lour and (Lo, respectively, and integrating 
gives 

and 

p - 1 / 2 m *  = 2 p  $0 d6.  I 
Using (124)  to eliminate the a ,  terms in (125)  and remembering ( A 1 2 ) ,  the matrix 
element (121)  is obtained as 

b,,o = 1 - Io/2m*@12. (126)  
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Correspondingly, 

E q S O  = 2m*pe1~/1~ (127) 

is the desired formula. 
The relation (127) is claimed to be exact. It implies that m* is large at least of order 

l/s, since always eo 3 1 holds true from physical grounds. This extreme tight binding is 
apparently an effect of the side oscillators. To verify this, consider HB to zeroth order, 
i.e. for z = 0. As is physically clear, this case gives a lower bound m g j  for m*. The 
wavefunctions turn out as 

i K u l -  i K  1’ vrdr/cr IT’ (oscillator ground states), 
r ) k  

and the energies ELo; form a parabolic band with effective mass 

m&j = I ~ / ~ ~ E I ~  (129) 

m*/m& = 1 + c o n s t a n t ~ z ~ e ’ - ~  (130) 

giving eo = 1 as expected. To second order 

either diverges ( p  <2) or remains 1 (2 < p ) ,  in agreement with the results of § 4. 
Especially, (130) confirms the conclusion drawn from the MA that the LG can only 
make eo= 00 or eo = 1. 

6. Solitons 

The correlation function eq can be represented and analysed as a functional integral in 
full analogy to the function space analysis of AES on the 1DCG. Their functional had 
minima at the soliton solutions of the static sine-Gordon equation, which in turn is 
derived from Mathieu’s equation. Correspondingly, viewing HB as a generalised 
Mathieu problem, the LG might be related to a sine-Gordon type theory as well. Soliton 
solutions also exist and are given here. 

Consider the Bloch Hamiltonian HB classical, turn to the Lagrangian, change to 
imaginary time (t+iT, u r ( t ) = 4 ( r ,  T ) ) ,  integrate over 7 and take the exponential 
function of this action (called --I?) to obtain the functional for the thermodynamics of 
the LG (Kogut 1979). The result is 

1 e A = /  d r ( K z  T r s ~ ’ ( r , ~ ) ~ ’ ( ~ , ~ ) + - ~ ’ 4 2 ( r , ~ ) - 2 2 c o s ~ ( 1 , ~ ) + 2 z  
4pI  r 

where 

Trs = 1 Drkk-2Dsk, (132) 
k 

and the primes denote derivatives with respect to 7. Note that proper embedding of the 
interaction, Baxter mapping and the above steps form a concise way to the functional 
integral formulation of the statistics of a given 1D classical gas. By analogy to AES it is 
not hard to guess the expression for the correlation function, 

dT (1 -cos q.r)(sin d(1, T )  sin 4(1, O ) ) ,  (133) 
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and to verify it afterwards by discretising the T axis, constructing the transfer operator 
(Gupta and Sutherland 1976) and arriving finally at (13) with (34) and (33). The 
average in (133) is defined as 

(134) 

where J 94 denotes the product 9#(1,  T )  J 9#(2 ,  7) . . . of functional integrals. To 
make easy use of this formulation, R should develop sharp minima in the function space 
such that gaussian evaluation of (133) represents a good approximation. The extrema 
of fi are the solutions of 

C T , , ~ " ( s ,  T )  = &,14,&eI sin 4(1, T )  + (1 - 6r,1)E24(r, 7 ) .  (135) 
S 

Besides the trivial solutions 4(r, T )  = v '7~&,~ of (135) (corresponding to minima at zero 
energy for even numbered v )  soliton solutions with the property 

4(r, Too) = (v'~+;v'T;v')7Tsr,l (136) 

are expected to exist (v' and v" even numbered, v' # 0) and to give the energy fi a finite 
value. To work them out the saw tooth approximation 

is used as a minor modification of (135), which does not influence the gross qualitative 
features of the above field theory. Then, using the techniques of Horovitz et a1 (1977) 
and Koch (1980), who solved similar problems, the single soliton solution (v"= 0, 
v' = 2; centred arbitrarily at T = 0 by 4(r, 0) = ' 7 ~ 8 , ~ )  is obtained as 

(138) 
T 

4sol(r, 7 )  = &,127~0(7) -- C Wkrjk exp(-tkelTI) 
171 k 

where 
Wkr =Sr,1+4pzId&rlE(t2k - c f ) ,  

j k  = 4'7T@zri/Et;, 

r k  =Yk( l=zE) ,  tk  =T&(l=ZE) ,  

with E = 1 - ~ / 4 p z I .  In verifying (138) note that W k l  = 1 and & j k  = IT (see (A4)). 

its centre, 
At first sight the soliton (138) has quite reasonable properties. So the derivative at 

has a finite value against E + O  (see (A5)). However, the energy of the soliton (138) 
derives from (131) as 

Esol = R ( l =  zE) (140) 
(cf ( 8 5 ) ,  (86)) and diverges logarithmically with E + 0. Accordingly, the soliton density 

(141) 
goes to zero with E + 0, if the factor R keeps a finite value in this limit. This situation 
would be ideal to employ the 'independent soliton approximation' (see AES). To 

(NsoJ/L  = R exp(-Eso1) - Re2/' 
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calculate R one is, however, also dependent on gaussian approximations of the 
functional integrals. Accepting even these approximations the evaluation of R and b, 
still becomes very involved. But the main steps correspond to those in the 1DCG case 
and are described by AES (Appendix C). Only the results are therefore given here. 

The factor R takes a finite value, indeed. However, this result is valid only for large 
z. The correlation function (133) is made up of two terms, b, = b: + b:', corresponding 
to small deviations from 4(r, r )  = 0 and from solitons, respectively. The leading 
(gaussian) contribution to b," agrees with the HA result (61), and the first anharmonic 
correction to ~540,~ is zero. Most probably all anharmonic terms of b:=o vanish as in the 
1DCG case (AES). Then deviations from the H A  result can only arise from the soliton 
term by' .  For the latter the single soliton (and antisoliton) contribution is sufficient due 
to (141). The leading term of this contribution turns out to be -8P- 'w(q )R  exp(-E,,J 
and vanishes with E + 0 (to describe the LG, note that the limit E + 0 has to be 
performed at finite wavevector 9). Thus, independent of the temperature, at sufficient 
large density the LG is in the metallic state. 
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Appendix 

Here various sums are evaluated containing the objects Tk and Yk. These are defined in 
the main text as functions of 5 by the equations (51) and (52). Note that for 4' = z and 
[ = zE the special cases TOk, Y O k  and t k ,  r k ,  respectively, are obtained (cf $ 5  4.1 and 6). 
All the following formulae apply to these special cases as well. Multiplying (51) with 
y : / ( r :  -s2) and summing over r gives 

(-41) c Y : / ( T ;  4) = &/4P5. 
r 

Then, multiplying ( A l )  with h 2 s / ( ~ 2 + p 2 ) ,  where p is arbitrarily real, summing over s, 
using ( 5 )  and exploiting again (51), one obtains the key relation 

c r:b: + p 2 )  = h w ) / ( 1 + 2 P c w ( E p ) ) .  (A21 
r 

The limits p + 00 and p + 0 in (A2) imply 

c Y: = 
r 

and 

respectively. Integrating (A2) over p gives 
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which remains a finite expression, if w(q)-, wo(q) as E -, 0 (see (6) and (7)). Differen- 
tiating (51) with respect to 5 and using (52), one obtains 

arTr = ~ P Y ~ / E T , .  (A61 

Combining (A6) and (A5), integrating over 5 and noting that ~ ~ ( 0 )  = r, one has 

( T r - r ) = ( l / & T )  ]lomdq ln[1+2P5wh)l (A71 

i.e. equation (56) in the main text. To evaluate the sum A ,  ( 8 5 ) ,  note that 
m 

rP/.r: = ( 2 / ~ )  ]l 0 dpp-’(Z r Y ~ / T ?  -E r ~ f / ( ~ f  + p ? )  

and use (A4) and (A2) to obtain 
m 

A = 4 ~ [ ( l +  ~ / 4 p l I ) ’  ]l dq q-’[(l+ 2p5w ( q ) ) - l -  (1 + 2Pfw (O))-’]. 
0 

This integral diverges for E -+ 0 (see (6)). Since 

w(q)  = 21/& - 2 1 ~ q ~ / ~ ~ + 0 ( q ~ / ~ ~ )  (A9) 

there are only finite contributions to (A8) from 0 < q < E. Therefore, the leading term 
of A towards E -+ 0 arises from E < q << 1, where w(q)  - r / q .  Thus, (A8) leads to 
A - (2/p) lf dq q-l ,  i.e. to equation (86) in the main text. Among the overlap integrals 
(§ 4.3) and the soliton energy (§ 6) there is yet another quantity, which is determined by 
the sum A ,  namely the half width of the (metallic) wavefunction I)0 in the easy direction. 
Consider I)0 in GA, (62), turn to the variables v k  by (101), XBX = U&, and evaluate Bll. 
The result is 

B11= A/2T21 (A101 

and shows that on the metal side for E + 0 the wavefunction I)o becomes infinitely 
sharply peaked. 

Part of the above analysis can be extended even to negative values of the parameter 
5. Comparing equation (104), which determines the numbers cr, with (51) implies 

C, = ~,(l= -&/4pI). (A1 1) 

However, note that the first solution of (104) is c1 = 0, i.e. ~ ~ ( 5 )  ceases to be real just at 
5 = -&/4PI. Nevertheless (105) may be compared with (52) to obtain df = yf/I. Also, 
(A3) may be used to derive 

(A121 1’ df = I /EI  - I / I o .  

C’ c;d;/(cf + p 2 )  = 1/&I -&p2w(Ep)[21(1 -&W(&p)/2I)]-l 

r 

Moreover, from (A2) and (A12) the sum 

(A131 

is obtained, which is needed to evaluate the function a, (120). Using (A13) this function 
becomes 

r 

cx = (1 -Ew(q)/2I)/Pqw(q). (A141 
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It is also possible, of course, to derive (A12) and (A13) from (104) and (105) without 
reference to negative [-values. 

Note added in proof. S A Bulgadaev kindly informed me of his general gas model (1979 Phys. Lett. B87 47-9, 
1979 JETPLett. 30 426-9) of which the LG is a special case. In a recent preprint (submitted to Phys. Lett. A) 
Bulgadaev arrives at results which differ from mine. The reason for this discrepancy is not yet understood. 
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